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Abstract 

 An assessment of the impact of various ionospheric models on high-frequency 

(HF) signal raytracing is presented.  Ionospheric refraction can strongly affect the 

propagation of HF signals.  Consequently, Department of Defense missions such as over-

the-horizon RADAR, HF communications, and geo-location all depend on an accurate 

specification of the ionosphere.  Five case studies explore ionospheric conditions ranging 

from quiet conditions to solar flares and geomagnetic storms.  It is shown that an E layer 

by itself can increase an HF signal’s ground range by over 100 km, stressing the 

importance of accurately specifying the lower ionosphere.  It is also shown that the GPSII 

model has the potential to capture the expected daily variability of the ionosphere by 

using Total Electron Content data.  This daily variability can change an HF signal’s 

ground range by as much as 5 km per day.  The upper-ionospheric response to both a 

solar flare and a geomagnetic storm is captured by the GPSII model.  In contrast, the 

GPSII model does not capture the lower-ionospheric response to either event.  These 

results suggest that using the GPSII model’s passive technique by itself may only be 

beneficial to specifying the ionosphere above the E region, especially during solar flares 

and geomagnetic storms. 
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ASSESSMENT OF THE IMPACT OF VARIOUS IONOSPHERIC MODELS 

ON HIGH-FREQUENCY SIGNAL RAYTRACING 

 
Introduction 

Motivation 

 The ionosphere affects a wide array of current Department of Defense (DoD) 

missions.  For example, the ability to communicate with satellites relies on 

electromagnetic signals successfully propagating through the ionosphere without 

excessive attenuation or refraction.  Furthermore, high-frequency (HF) communications, 

over-the-horizon RADAR (OTHR), and certain methods of target direction finding all 

require electromagnetic signals to be refracted within the ionosphere.  Future combat 

operations will continue to rely on our ability to precisely and accurately locate an 

enemy’s position.  Active sensing techniques can regrettably reveal the locations of 

friendly forces.  This research focuses on the goal of developing an ability to geo-locate 

an enemy solely through intercepted communications.  Even better, perform this geo-

location passively without revealing the location of friendly forces.  The future success of 

geo-location, as well as the other DoD missions, remains highly dependent on our ability 

to accurately measure and predict the dynamic state of the ionosphere. 

One of the most recent advances in ionospheric modeling is the NorthWest 

Research Associates’ (NWRA) Global Positioning System (GPS) Ionospheric Inversion 

(GPSII) model.  As its name suggests, the model employs real-time Total Electron 

Content (TEC) information that is passively obtained from GPS signals.  Two additional 
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ionospheric models currently available are the 2001 version of the International 

Reference Ionosphere (IRI-2001) model and the Parameterized Ionospheric Model (PIM).  

This thesis will focus on assessing the impact of these ionospheric models on HF signal 

raytracing when applied to the critical national defense mission of geo-location. 

For the purpose of this thesis, geo-location describes the act of locating and/or 

tracking an enemy using HF signals.  The two main techniques of geo-location use either 

multiple receiver sites or a single receiver site.  This thesis focuses on a rigorous version 

of the latter technique, commonly referred to as “single site location” (SSL), which uses a 

complex three-dimensional raytracing algorithm and an ionospheric model to predict a 

signal’s propagation path. 

Ionospheric refraction can greatly affect the propagation behavior of a signal, 

especially in the HF range of frequencies.  If the state of the ionosphere is not properly 

specified, the raytracing algorithm will produce an erroneous enemy location.  The 

primary objective of this thesis is to assess the impact of the three ionospheric models on 

HF signal raytracing during various ionospheric conditions.  The secondary objective is 

to determine whether using passive techniques to model the ionosphere is sufficiently 

accurate for geo-location.  Categorizing the models’ strengths and weaknesses will 

improve our ability to locate an enemy and, in turn, enhance the first four stages of the 

Air Force’s six-stage “kill chain”, which is find, fix, track, and target. 

Overview 

This thesis includes a comparison of high-frequency (HF) signal raytracing using 

the 2001 version of the International Reference Ionosphere (IRI-2001) model, the 

Parameterized Ionospheric Model (PIM), and the new Global Positioning System (GPS) 
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Ionospheric Inversion (GPSII) model.  These comparisons are done for various 

ionospheric conditions, including:  quiet, daily variability, solar flare, and geomagnetic 

storming.  Model strengths and weaknesses are discussed, as well as whether using 

passive techniques to model the ionosphere is sufficiently accurate for geo-location. 

Chapter two describes important background knowledge: the ionospheric 

environment (structure and behavior), signal propagation, ionospheric models, geo-

location, and raytracing.  Chapter three discusses the methodology used for this thesis, 

which is mostly the procedures for properly integrating the three main components of 

data collection, processing, and visualization: the ionospheric model, raytracing 

algorithm, and MATLAB® software.  Chapter four presents the case study results, while 

chapter five provides conclusions and recommendations for future research. 

Results Preview 

 The case studies reveal many interesting characteristics of the ionospheric models 

when applied to HF signal raytracing.  It is shown that the ionosphere’s E layer by itself 

can increase a signal’s ground range by over 100 km, stressing the importance of 

accurately specifying the lower ionosphere.  It is also shown that the GPSII model has the 

potential to capture the expected daily variability of the ionosphere by using TEC data, 

which can affect a signal’s ground range by as much as 5 km per day.  Furthermore, the 

GPSII model can capture the upper-ionospheric response to both a solar flare and a 

geomagnetic storm, yet cannot capture the lower-ionospheric response to either event.  

These results suggest that using the GPSII model’s passive technique by itself may only 

be beneficial to specifying the ionosphere above the E region, especially during solar 

flares and geomagnetic storms. 
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Background 

Ionospheric Environment 

 The ionosphere is defined as the ionized region of the Earth’s upper atmosphere, 

comprised of several layers containing free electrons and various ionized particles.  Solar 

photons provide the primary source of ionization, as extreme ultraviolet (EUV) and x-ray 

radiation break apart neutral atmospheric molecules to produce ions and free electrons.  

Secondary sources of ionization are photoelectrons, energetic particle precipitation, 

auroral precipitation, scattered radiation, starlight, and meteors.  The mid-latitude 

ionosphere, in which this thesis will focus, is composed of the following layers:  D, E, F1, 

F2, and the topside ionosphere.  It is typically accepted that the ionosphere begins at 

around 60 kilometers (km) and extends to approximately 1000 km, depending on the 

degree of solar activity.  The ionosphere transitions to the plasmasphere above 1000 km.  

Davies [1989] provides a good illustration of the ionospheric regions, reproduced in 

Figure 1.  Each layer can be distinguished by a local peak in the electron density profile 

corresponding to a particular dominating ion species.  In addition, each layer is controlled 

by different production and loss mechanisms with varying reaction rates.  The remainder 

of this section will briefly describe each layer and their relevant temporal behavior. 

 The D region (60 to 90 km) is dominated by photochemical processes and has the 

most diverse composition, including: molecular ions, positive and negative ions, and 

water cluster ions.  Consequently, this region is considered to be the most difficult to 

model and observe with any reliability [Schunk and Nagy, 2000].  The E region (90 to 

150 km) is also dominated by photochemistry and consists primarily of molecular ions 

such as O2
+, N2

+, and NO+ that form an observable peak in the density profile.  The F1 
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region (150 to 250 km) is still dominated by photochemical processes, yet is the 

transition region in which O+ becomes the principal ion species.  Although not dominant, 

there are also transport mechanisms present in this region, such as ambipolar diffusion, 

wind-induced drifts along magnetic field lines, and electrodynamic drifts across magnetic 

field lines [Schunk and Nagy, 2000].  The F2 region (250 to 450 km) is where the 

importance of these transport mechanisms become balanced with the photochemical 

processes, creating a well-defined peak in the O+ density profile.  The topside ionosphere 

is the region above the F2 peak where the transport mechanisms dominate, resulting in an 

exponential decrease in O+ density with altitude.  Given that this thesis focuses on geo-

location, we are only interested in the ionosphere’s behavior below the F2 peak where 

maximum refraction of HF signals occurs. 

 
Figure 1:  Ionosphere electron density (m-3) as a function of altitude (km) 
depicting the typical ionospheric layers observed on a mid-latitude summer day.  
The main bands of solar and cosmic ionizing radiation are noted [Davies, 1989]. 
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 One of the main techniques for obtaining real-time observations of the ionosphere 

below the F2 peak uses vertical incidence ionosondes, which are HF radars that are 

directed toward zenith.  A sweep of frequencies is transmitted and the time delay of each 

signal’s return is measured.  The following expression relates the plasma frequency pf  of 

a layer (in MHz) to the electron density  (in meN -3) [Sturrock, 1994]. 

 ( ) 6MHz 9 10 (m )pf −× -3
eN  (1) 

Ignoring the effect of the Earth’s magnetic field, the critical frequency cf  of the 

ionosphere is the maximum frequency that can be still be refracted back to the ground 

when transmitted toward zenith.  Signals with frequencies higher than the critical 

frequency will pass through the ionosphere.  A signal’s “virtual height of reflection” is 

equivalent to the distance that the signal would have traveled during half the elapsed 

travel time, assuming it traveled at the speed of light in free space.  An ionogram is a plot 

of this virtual height as a function of frequency; an example is shown in Figure 2.  In this 

figure, the solid black line is the plasma frequency (which equates to electron density via 

Equation 1) as a function of height, found by inverting the observed virtual height.  Note 

that ionosondes can only determine the “bottomside” frequency profile of the ionosphere; 

models are used to estimate the “topside” profile.  Estimates of the electron density can 

be used to determine the ionosphere’s refractive index as a function of position, which is 

needed for raytracing. 

 The mid-latitude ionosphere exhibits dramatic changes on many timescales, 

including diurnal, seasonal, solar cycle, and irregular variations.  A good example of the 

diurnal variation is seen in Figure 3, where the plasma frequency ( p ef N∝ ) is shown 
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Figure 2:  A real-time ionogram created from a vertical incident ionosonde in Juliusruh 
on 15 April 2006 by the Leibniz-Institute of Atmospheric Physics.  The transmitter emits 
a sweep of frequencies, the receiver detects the refracted signals, and then a “virtual 
height of reflection” is calculated from the signals’ travel time.  The black line is the 
electron density profile computed from the virtual height.  Colors denote strength of 
signal return (warm colors = stronger dB).  The ionosphere above the F2 peak cannot be 
measured from a vertical sounding, thus models are used to estimate this. 

 

as a function of height at Wright-Patterson Air Force Base (WPAFB) throughout an 

entire day.  The plasma frequency increases rapidly at sunrise (~ 1200 UT) due to 

photoionization and then decays after sunset (~ 2100 UT) when photoionization vanishes.  

In particular, notice how quickly the E layer decays after sunset.  The rate of ionization is 

strongly dependent on solar zenith angle at altitudes where photochemical processes 

dominate, i.e. below the F2 peak.  The electron density above the F2 peak is dependent not 

only on solar zenith angle, but also transport processes such as the magnitude of 

meridional neutral winds [Schunk and Nagy, 2000]. 
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Figure 3:  An example of the ionosphere’s diurnal variation.  Plasma 
frequency (MHz) as a function of height (km) at Wright-Patterson AFB 
on the autumnal equinox during normal solar and geomagnetic activity. 

 

Considering that photoionization is the main source of ionization, it is logical that 

the ionosphere would display a strong seasonal variation as the solar zenith angle and 

hence photon flux changes throughout the year.  Figure 4 gives an example of the 

seasonal variation in plasma frequency as a function of height at WPAFB at local noon.  

Notice that the plasma frequency is greater in winter than in summer, in spite of the fact 

that the solar zenith angle is greater in winter.  This “seasonal anomaly” is due to the 

ionosphere’s strong coupling with the neutral atmosphere, which also experiences 

seasonal fluctuations.  An increased O/N2 ratio in winter leads to a sufficient increase in 

the effective O+ production rate, counteracting the solar zenith angle effect [Schunk and 

Nagy, 2000]. 
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Figure 4:  An example of the ionosphere’s seasonal variation.  Plasma frequency 
(MHz) as a function of height (km) for Wright-Patterson AFB at local noon on the 
autumnal equinox and solstices during normal solar and geomagnetic activity. 

 

 As with seasons, the solar radiation flux also varies with solar cycle.  Solar EUV 

flux, which is the primary photon energy for photoionization, is significantly greater at 

solar maximum compared to solar minimum.  Figure 5 shows an example of the solar 

cycle variation in plasma frequency as a function of height at WPAFB at local noon.  The 

higher plasma frequencies (i.e. greater electron densities) at solar maximum are a result 

of changes in the neutral atmosphere as well as greater solar radiation flux amplifying the 

ionization rates. 
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Figure 5:  An example of the ionosphere’s solar cycle variation.  Plasma 
frequency (MHz) as a function of height (km) for Wright-Patterson AFB at 
local noon on the autumnal equinox during normal geomagnetic activity. 

 

 Irregular variations of the ionosphere include localized enhancements of the E 

region, known as a sporadic E layer.  This layer can be flat and homogeneous or rather 

diffuse in size.  An example of a sporadic E layer is seen in Figure 6.  The electron 

density is plotted as a function of altitude and time, as measured by the Arecibo 

incoherent scatter radar [Schunk and Nagy, 2000].  There is a distinct sporadic E layer at 

116 km, with a peak electron density of about 5 x 105 cm-3.  This layer persists after 

sunset (approximately 1800 local time) whereas the remainder of the region below the F2 

peak quickly decays.  Since zonal neutral winds induce vertical ion drifts, any vertical 

wind shear will cause sporadic E layers to form where the drifts converge.  Also seen in 
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Figure 6 is an “intermediate layer”, which can appear in the lower F region at night (in 

this case 2030 local time) and gradually descends into the E region.  In contrast to 

sporadic E layers, this layer is primarily formed by convergence of vertical ion drifts due 

to vertical wind shear of meridional rather than zonal neutral winds [Schunk and Nagy, 

2000]. 

 
Figure 6:  Ionospheric irregular variations.  Electron density is shown as a function of 
both height and time.  A sporadic E layer persists for the entire time period, while an 
intermediate layer begins to descend in height at approx 2000 LT.  Density measured 
with Arecibo incoherent scatter radar on 7 May 1983.  [Schunk and Nagy, 2000] 

 

 Another irregular variation of the ionosphere occurs during geomagnetic storms.  

In particular, the F region experiences a density enhancement during the initial (or 

positive) phase and then depletion during the main (or negative) phase of a geomagnetic 

storm.  The cause of this effect is still not well understood.  Although beyond the scope 

of this thesis, it is worth mentioning that the current hypothesis considers a combination 

of three mechanisms.  First, variations in the neutral wind will raise or lower the 
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ionosphere, thereby changing the neutral atom/molecule ratios and thus the ion 

production/loss ratios.  Second, the protonosphere’s ability to act as a reservoir and 

“refill” the ionosphere at night is reduced during a geomagnetic storm.  Third, heating 

from the magnetosphere via O+ precipitation from the ring current increases the 

recombination rate [Hargreaves, 1992].  Figure 7 shows an example of the geomagnetic 

storm variation in plasma frequency as a function of height at WPAFB at local noon.  

The F region’s plasma frequency decreases as the geomagnetic storm strength increases, 

characterized here by an increase in the 39-hr running average ap index.  The ap index is 

 
Figure 7:  An example of the ionosphere’s variation during the main (or negative) phase of 
a geomagnetic storm.  Plasma frequency (MHz) as a function of height (km) for Wright-
Patterson AFB at local noon on the autumnal equinox during normal solar activity.  Note 
that the E layer peak at approx. 110 km is the result of an oversimplification in the IRI 
“storming” model and is not a realistic response of the lower ionosphere during storming 
conditions. 
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the linear equivalent to the Kp index, which is a quasi-logarithmic index of the 3-hourly 

range in magnetic field strength relative to a designated quiet-day curve, averaged and 

standardized for 13 mid-latitude geomagnetic observatories.  Note that Figure 7 is created 

with the IRI-2001 model, which oversimplifies this effect by using a density scale factor 

above 165 km.  The model is then forced to interpolate below 165 km, creating an 

unrealistic E layer at 110 km.  A more detailed description of the IRI-2001 model will be 

given in a subsequent background section titled “Ionospheric Models”. 

 Irregular variations in the ionosphere, such as sporadic E layers and F layer 

depletion during geomagnetic storms, can make accurate raytracing of HF signals 

considerably more difficult (if not impossible) due to their erratic behavior.  The next 

section describes a few of the most important ionospheric effects on HF signal 

propagation. 

Signal Propagation 

 Historic studies of HF signal propagation have revealed a wide range of 

interesting and now well-documented ionospheric effects, such as absorption, frequency 

shift, polarization shift, Faraday rotation, phase delay, group delay, and refraction.  The 

latter effect has been identified as having the greatest influence on geo-location accuracy 

and therefore will be the focus of this section [McNamara, 1991].  We will see how 

refraction is directly proportional to electron density and how it affects signal 

propagation. 

 For simplicity, assume the signal is propagating within a cold, un-magnetized, 

plasma.  Based on the development of Sturrock [1994], the refractive index, n , for this 

plasma is found to be the following: 

13 



www.manaraa.com

 

 
2 2

2
s

1 1plasma e

phase signal e ignal

q Ncn
m

ω
ν ω π υ
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where  is the speed of light, c phaseν  the phase velocity, plasmaω  the angular plasma 

frequency, signalω  the angular signal frequency,  the electron density, q  the electron 

charge,  the electron mass, and 

eN

em signalυ  the signal frequency.  Equation 2 indicates that 

the index of refraction approaches unity as the signal frequency approaches infinity or as 

the electron density goes to zero.  This is the point at which no refraction occurs and the 

signal continues to propagate as it would in a vacuum.  More importantly, the index of 

refraction approaches zero as the signal frequency approaches the plasma frequency, 

signifying the point at which the signal experiences maximum refraction. 

 Akin to geometric optics, the propagation of a signal between two media of 

differing refractive indices is given by Snell’s Law, 

 sin sini i rn n rθ θ=  (3) 

The subscripts differentiate between the incident (i) and refracting (r) medium, while the 

angle θ  is measured from the normal of the boundary.  An illustration of this relation is 

seen in Figure 8. 

 
Figure 8:  Snell’s Law.  Electromagnetic wave refracts away from the boundary 
normal when traveling into medium with smaller refractive index (seen on right side). 

14 



www.manaraa.com

 

As a fixed-frequency signal propagates from a higher to lower electron density the 

refractive index of the plasma increases and the signal’s phase velocity decreases, 

meaning the signal will refract toward the normal.  Conversely, as the signal propagates 

from a lower to higher electron density the refractive index of the plasma decreases and 

the signal’s phase velocity increases, meaning the signal will refract away from the 

normal.  When conceptually applied to the ionosphere it is this latter case that ultimately 

leads to signal “reflection”.  If a signal is transmitted into an ideal ionosphere that can be 

characterized as a horizontally homogeneous slab consisting of stratified layers of 

increasing density (decreasing refractive index) with height, then Snell’s Law says that 

the signal would eventually propagate perpendicular to the normal.  It is at this point that 

Snell’s Law breaks down, failing to explain how a signal is “reflected” by the ionosphere.  

Therefore, the signal needs to be treated as a wave in order for the signal to continue 

refraction back down to the original refractive index with the same angle of incidence, as 

seen in Figure 9.  A more detailed description of this wave treatment will be given in a 

subsequent background section titled “Raytracing”. 

 
Figure 9:  Application of Snell’s Law in the ionosphere.  The electromagnetic signal 
progressively refracts away from the boundary normal until the signal propagates 
perpendicular to the normal.  Signal must be treated as a wave to account for 
continued refraction.  Notice that the refractive index decreases with altitude, while the 
electron density increases with altitude. 
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 Equations 2 and 3 indicate that higher signal frequencies require greater electron 

densities for refraction to occur.  Since the refraction occurs later in the propagation, the 

signal path length increases.  This relationship is seen in Figure 10, where the signal 

propagation paths are shown for increasing frequencies.  Notice that higher frequencies 

eventually penetrate the ionosphere. 

 
Figure 10:  Dependency of signal propagation path on signal frequency.  Greater electron 
densities are needed for higher frequencies to refract.  The signal path length increases 
when refraction occurs later in the propagation.  Higher frequencies eventually penetrate 
the ionosphere.  Note that this assumes a horizontally homogeneous ionosphere. 

 

 Further examination of Equations 2 and 3 reveals a strong dependence on the 

elevation angle (measured from horizon; 90o - incident angle iθ ), and is illustrated in 

Figure 11.  Initially the 12.45 MHz signal penetrates the ionosphere because its elevation 

angle is too large.  Then the signal becomes progressively more refracted as the elevation 

angle decreases, eventually leading to “reflection”.  Notice that the altitude at which 

reflection occurs, hereafter called apogee height, begins to decrease as the elevation angle 

decreases.  It is also interesting that the signal path length (and “first hop” ground range) 

initially decreases and then ultimately increases with smaller elevation angles.  This 

behavior defines, in effect, a minimum ground range of approximately 1100 km for this 

16 



www.manaraa.com

 

particular frequency and ionospheric state.  In other words, the only way to propagate a 

signal to a location less than 1100 km away is to change the frequency, not the elevation 

angle. 

 
Figure 11:  Dependency of signal propagation path on elevation angle.  12.45 MHz 
signal transmitted with elevation angles increasing from 5o – 50o (measured from 
horizon).  Dashed line specifies the ionospheric density profile.  Notice that the 
“reflection” altitude (apogee height) increases and the “first hop” ground range initially 
decreases then ultimately increases with larger elevation angles.  [Doherty, 2004] 

 

 Adding a layer of complexity, assume that the signal now propagates within a 

magnetized plasma.  The presence of the Earth’s magnetic field introduces an effect 

known as magnetoionic splitting.  Refer to Budden [1985] for the appropriate form of 

Equation 2 when a magnetic field is taken into account.  Magnetoionic splitting 

differentiates the behavior of the ordinary and extraordinary propagation modes.  

Although this thesis focuses exclusively on the ordinary mode, it is still important to 

briefly describe the propagation behavior of the two modes.  Figure 12 illustrates how a 

signal’s ordinary mode deviates from its initial elevation angle (towards zenith) and 

eventually becomes perpendicular with the local magnetic field vector.  This deviation 

towards the magnetic field also occurs when the signal is transmitted away from zenith. 
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Figure 12:  Magnetoionic splitting of a 5 Hz signal transmitted toward zenith from 
Wright-Patterson AFB at local noon on the autumnal equinox during normal solar 
and geomagnetic activity.  The signal’s propagation is affected by the local magnetic 
field.  The signal’s ordinary mode refracts to become perpendicular to the local 
magnetic field vector, while its extraordinary mode refracts to become parallel. 

 

 Figure 13 shows the crossrange track of a signal transmitted towards magnetic 

west as a function of distance downrange from the transmitter (i.e. propagation path 

projected onto x-y plane; note axes scale difference).  The signal’s ordinary mode begins 

to deviate towards magnetic north as it enters the ionosphere, reaches maximum 

crossrange at the point of “reflection”, and then returns to the original transmission 

azimuth angle (measured from true north) as it exits the ionosphere.  The same deviation 

occurs for transmission towards magnetic east.  The magnitude of this deviation 

decreases as the transmission azimuth becomes more aligned with a magnetic meridian.  

In other words, there is no deviation when the signal is transmitted parallel to a magnetic 

meridian, such as from magnetic north to south or south to north.  Both of these examples 

simply illustrate how propagation behavior is dependent on a signal’s mode.  Appendix A 

contains additional examples of magnetoionic splitting behavior. 
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Figure 13:  Magnetoionic splitting of a 10 MHz signal transmitted from Wright-
Patterson AFB toward magnetic west at local noon on the autumnal equinox 
during normal solar and geomagnetic activity.  Shown is crossrange (km) as a 
function of distance downrange (km).  The signal’s ordinary mode deviates toward 
magnetic north, while its extraordinary mode deviates toward magnetic south. 

 

 The strong dependence of HF signal propagation on the ionosphere’s refractive 

index necessitates the capability to accurately model both the regular and irregular 

variations of the ionosphere.  Therefore, it is important to understand the background of 

each ionospheric model used in this thesis and, in particular, how their designs differ. 

Ionospheric Models 

 Three separate ionospheric models are used in this thesis.  The first model is the 

2001 update of the International Reference Ionosphere (IRI-2001) model.  It is sponsored 

by both the Committee on Space Research (COSPAR) and the International Union of 
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Radio Science (URSI) and is often considered the standard for ionospheric parameters 

[Bilitza, 2001].  Being an empirical climatology model, it determines the dominant 

variations of ionospheric parameters from an existing observational database.  

Experimental observations from all available data sources, including ground and space, 

are used to predict a monthly average for each ionospheric parameter, assuming 

magnetically quiet conditions in a non-auroral ionosphere.  Several solar indices are used 

as model input parameters.  The 12-month running average of the sunspot number 

produced at the Zurich observatory (Rz12) is used for the F peak altitude and topside 

profile.  Finally, the 39-hr running average of the ap index is used to capture the F region 

depletion that occurs during a geomagnetic storm.  IRI-2001 can also use real-time 

ionosonde data for better representation of the E region.  It is worth noting that a newer 

version of IRI (after 2001) is being augmented to include TEC data inferred from GPS 

satellite data as another real-time input.  Of the many IRI-2001 output parameters, this 

thesis only requires plasma frequency (i.e. electron density) as a function of position 

within a user-specified 3-D grid. 

The second model is the Parameterized Ionospheric Model (PIM).  Unlike IRI-

2001, PIM is based on theoretical climatology rather than empirical climatology.  While 

empirical models are, by their very nature, limited by the quantity and type of observed 

data, PIM produces a summary of the output of four physics-based numerical models 

parameterized for a variety of ionospheric conditions.  Daniell et al. [1995] provides a 

concise description of the main difference between empirical and theoretical climatology: 

Empirical climatology yields an “average” ionosphere in which the average 
may be taken over very different ionospheric configurations.  Persistent 
features such as the subauroral trough, auroral oval, or equatorial anomaly 
may be smeared out or broadened as a result of the averaging process … 
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Theoretical climatology yields a “representative” ionosphere, i.e., an 
ionosphere that corresponds to a potentially realizable set of specific 
geophysical conditions.  Ionospheric features will have locations, widths, 
amplitudes similar to those that might be observed on any given day under 
the specified geophysical conditions.  Theoretical climatology is limited by 
the accuracy and completeness of the physics and chemistry included in the 
theoretical models on which it is based and the computer resources required 
to span the full range of geophysical conditions.  [Daniell et al., 1995] 
 

Parameterization is accomplished in a two-step process.  First, the four physics-based 

models created databases for distinct ionospheric conditions, such as various solar and 

geomagnetic activity levels.  Then these databases were fit with semi-analytic functions 

to minimize storage space.  PIM uses the Rz12 index to estimate solar activity and the Kp 

index to estimate geomagnetic activity.  For the purpose of this thesis, PIM’s 3-D grid 

output of electron density is transformed into a 3-D grid of plasma frequency by using the 

relation found in Equation 1. 

The third model is the new GPSII model introduced in Chapter I.  Ionosondes can 

often be unavailable in a region of interest or their coverage may be too sparse to obtain 

an accurate specification of the ionosphere, especially in a combat environment.  The 

GPSII model solves this problem by using passive measurements of the ionosphere.  By 

analyzing data collected from dual-frequency GPS ground receivers, the GPSII model 

can estimate the TEC of the ionosphere along the many “lines of sight” between GPS 

satellites and ground receivers.  (One TEC unit (TECU) = 1016 electrons per square meter 

integrated along the signal path.)  Relative (or differential) TEC values are estimated by 

differencing the phase between the L1-band (1575.42 MHz) and L2-band (1227.6 MHz) 

GPS signals, while the absolute TEC data is estimated by differencing the group delay 

between the two signals.  In order to correct for inherent error found in the data, the 

GPSII model accumulates statistics of both the GPS transmitter bias and receiver bias.
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 Either the IRI-2001 model or PIM can be used as its initialization (or 

background).  Thus, its primary input parameters for solar and geomagnetic activity are 

the same as the input parameters of the particular model used for initialization; Rz12, IG12, 

ap, or Kp respectively.  It then employs a Tikhonov inversion technique to convert the 

TEC data into a user-specified 3-D grid of plasma frequency.  This inversion technique is 

an evolution of the technique developed for the Coordinate Registration Enhancement by 

Dynamic Optimization (CREDO) software package used in OTHR applications.  

Fridman et al. [2006] presents a more detailed discussion of the inversion technique and 

provides compelling evidence that the GPSII model’s TEC-only specification can agree 

very well with actual ionosonde measurements.  Although the GPSII model can 

incorporate ionosonde data into its inversion solution, this thesis focuses solely on its 

passive technique. 

Geo-location 

As mentioned in Chapter I, geo-location techniques can be divided into two main 

categories.  The first technique uses several widely separated receivers to measure the 

signal’s azimuth and triangulate the location of the transmitter.  The second technique 

uses a single receiver to measure the signal’s azimuth and elevation to determine the 

location of a transmitter, assuming that the ionospheric conditions along the signal’s path 

are known.  Refer to Figure 15 for an example.  This latter technique is commonly 

referred to as single site location (SSL) and has several differing levels of complexity, 

ranging from a simple approximation to an extremely rigorous calculation. 

The “classical” SSL method is considered the simplest approximation and can be 

used for medium-range applications (200 km – 500 km).  This method assumes a signal is 
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reflected from a simple horizontal mirror at a particular height, based on fundamental 

laws of radio propagation in the ionosphere.  The most important of these, conceptually, 

is Martyn’s equivalent path theorem, which correlates a signal’s oblique reflection with 

its vertical reflection.  Referring to Figure 14, “the virtual height of reflection for vertical 

incidence is equal to the height of the equivalent triangular path for the oblique signal” 

[McNamara, 1991].  Ionograms made at the receiver can be used to infer the height of the 

“mirror” and thus the range to the transmitter (assuming the ionosphere is horizontally 

homogeneous), since ionosondes measure the virtual reflection heights as a function of 

signal frequency. 

 
Figure 14:  Martyn’s equivalence path theorem.  Correlates a signal’s 
oblique reflection with its vertical reflection.  [McNamara, 1991] 

 

 The classical SSL method has several weaknesses.  Firstly, the ionogram made at 

the receiver is not a direct measure of the ionosphere where the signal refracts back 

downward.  Secondly, we can only approximate the maximum height of the signal’s path.  

Thirdly, Martyn’s equivalence path theorem is exact only for a flat-Earth approximation 

[McNamara, 1991].  The equations used for the classical SSL method are further 
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complicated when the presence of the Earth’s magnetic field is included.  Refer to 

McNamara [1991] for an example application of the classical SSL method. 

 The “tilt correction” SSL method, which can be used for short-range applications 

(< 200 km), is considered slightly more complex.  Horizontal gradients in electron 

density, conceptually visualized as a tilt in the ionosphere, can dramatically affect a 

signal’s predicted ground range.  There can be “synoptic tilts due to large-scale variations 

of the ionosphere with latitude and longitude, medium-scale tilts associated with traveling 

ionospheric disturbances (TIDs), and small-scale tilts with no obvious patterns” 

[McNamara, 1991].  The degree of tilt can be determined by an ionosonde measuring the 

angle of arrival of its own returning signals.  A tilt correction is then applied to the 

classical SSL method, which now assumes that a signal is reflected from a simple tilted 

mirror at a particular height, as illustrated in Figure 15. 

 
Figure 15:  Short-range Single Site Location (SSL) technique using a three-
dimensional tilted-slab ionosphere.  (DRS Codem Systems, SSL presentation, 2006) 
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Raytracing, which can be used for long-range applications (> 500 km), is the most 

rigorous SSL method.  As emphasized in the next section, raytracing relies heavily on 

having accurate knowledge of the ionosphere’s electron density profile along the entire 

signal path.  For that reason, a good ionospheric model becomes a crucial component.  

There can be many levels of raytracing complexity, depending on the ionospheric 

model’s accuracy and the method of computation.  Methods range from analytic 

raytracing with a simple one-dimensional non-magnetic ionosphere to numerical 

raytracing through a complex three-dimensional magnetic ionosphere.  The theory and 

evolution of the numerical raytracing used in this thesis are presented in the next section. 

Raytracing 

 The concepts found within geometrical optics eventually became the foundation 

for raytracing theory.  In his third treatise supplement on geometrical optics, Hamilton 

[1832] introduced a set of differential equations that described the path of an 

electromagnetic signal through an anisotropic medium.  In the dawn of the computer age, 

Haselgrove [1954] suggested that computers could numerically integrate Hamilton’s 

equations and become “a new method for calculating ray paths in the ionosphere”.  

Within a few years Haselgrove and her husband developed “a raytracing program to 

calculate ‘twisted ray paths’ through a model ionosphere using Cartesian coordinates” 

[Haselgrove and Haselgrove, 1960].  Further efforts came to fruition in 1975, when 

Jones and Stephenson [1975] developed a FORTRAN program to calculate a signal’s 

three-dimensional path through an ionosphere whose refractive index constantly varied.  

We use an updated version of the Jones-Stephenson raytracing algorithm developed by 

Mark Hausman and L.J. Nickisch of NWRA. 
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 Hamilton’s differential equations have been derived using a variety of techniques 

throughout the years.  Typically the form of the equations is dependent on their 

application, such as OTHR [Coleman, 1998] versus HF communications [McDonnell, 

2000].  These equations are now collectively known as the “Haselgrove ray equation 

system” and are used within the Jones-Stephenson raytracing algorithm [Huang and 

Reinisch, 2006].  For the full derivation of these equations refer to Jones and Stephenson 

[1975] or Nickisch [1988].  This system of equations becomes considerably more 

complicated when the Earth’s magnetic field is included.  For a thorough description of 

propagation in the presence of a magnetic field refer to Kelso [1964], Davies [1989], or 

Budden [1985]. 

The equation set emphasizes how the signal’s position and propagation vector are 

dependent on the ionosphere’s index of refraction along the propagation path.  The 

equations are numerically integrated at each step along the signal’s propagation path, 

resulting in a new position and propagation vector for the signal at each successive step.  

The usefulness of this solution depends entirely on the accurate specification of the 3-D 

refractive index.  Theoretically, we can measure the electron density as a function of 

position and then determine its refractive index by using Equation 2.  However, it is 

impractical (and perhaps impossible) to fully specify the ionosphere through 

measurements alone, which is why ionospheric models are used to fill the gap. 

Significant effort has been made by Hausman and Nickisch to ensure the 

raytracing algorithm works well with the models [Fridman et al., 2006].  As a 

consequence of design, successful synthesis of the raytracing algorithm and the 

ionospheric models, especially when doing comparison studies, requires a disciplined 
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organizational structure.  Furthermore, the visualization of the output depends upon 

software such as MATLAB®, as well as considerable programming experience.  The 

next chapter describes the methods used to connect each of these components, as well as 

the reasons for particular case study selections. 
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Methodology 

Overview 

 The primary objective of this thesis is to assess the impact of the three ionospheric 

models on HF signal raytracing during various ionospheric conditions.  The secondary 

objective is to determine whether using passive techniques to model the ionosphere is 

sufficiently accurate for geo-location.  Achieving these objectives require the integration 

of the ionospheric models, the Hausman – Nickisch update of the Jones – Stephenson 

raytracing algorithm, and MATLAB®.  Figure 16 provides a summary of the flow of data 

between the components and the user. 

 
Figure 16:  Summary of the flow of data between the user and the required 
components.  The user directs the components to read initialization parameters, 
process data, and output results in proper formats for visualization and comparison. 

 

This process is similar to that used by Aune [2006] in his study of trans-ionospheric 

raytracing.  Each component requires interface with the user at various stages of the 

process.  First, GPS data is collected for a user-defined region of interest using 

MATLAB®.  Once initialized with user-defined parameters, the GPSII model produces 
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two ionospheric specifications.  One is the background (initialization) model 

specification, while the other specification includes the TEC data.  The raytracing 

algorithm’s output includes the signal propagation path, which is processed and 

visualized using MATLAB®.  The entire process is run on a Hewlett-Packard XW6200 

Workstation configured with Windows XP, a 3.4 GHz Xeon processor, and 2 GB of 

RAM.  The next sections provide a more detailed description of how each component is 

operated. 

Ionospheric Models 

 A stand-alone IRI-2001 model is used to create idealized, horizontally 

homogeneous plasma frequency profiles for WPAFB.  IRI-2001 model input parameters 

include the following:  date and time of interest; region and resolution of interest; sunspot 

number and ap indices, which are automatically determined by referencing a database file 

using the date and time of interest.  Its output is a horizontally homogeneous plasma 

frequency profile for WPAFB.  Many of the figures within Chapter II are produced using 

this model. 

 Similar to the stand-alone IRI-2001 model, the GPSII model is treated as a “black 

box”.  Yet, as expected with any model still under development, some anomalies in the 

GPSII model can arise throughout the research process.  An official user’s guide is now 

available from NWRA; it provides detailed information on the required file directory 

structure, input parameters, output files, and plotting options. 

 For this research, we focus on a 2000 x 2000 km region centered on WPAFB; this 

allows us to explore HF signal propagation distances of up to 1000 km from WPAFB.  

As recommended by NWRA, a latitude and longitude grid resolution of 0.5 degrees (~ 50 
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km) is used.  In addition, a stepped altitude grid is selected for maximum resolution 

below the F2 peak.  Bearing in mind the time scales of most ionospheric behaviors, a time 

resolution of 15 minutes is adequate.  The minimum distance between GPS ground 

receivers is set to a value (~ 250 km) that results in a maximum of 21 receivers to be used 

by the GPSII model.  This upper limit on the number of used receivers is chosen in order 

to avoid system crashes due to computer processor/memory limitations, whilst ensuring 

sufficient TEC data availability.  An example of GPSII input parameters are found in 

Appendix B. 

 The GPSII model is ran with a time interval of at least 12 hours so as to collect 

GPS satellite and ground receiver bias statistics for each particular day of interest.  The 

model is then run again with a time interval of 24 hours (0000 UT – 2400 UT) using the 

previously collected bias statistics.  Among its many output files are two ionospheric 

specifications, i.e. 3-D grids of plasma frequency.  The first specification is that of the 

initialization model (either IRI-2001 or PIM), while the second includes the TEC data.  

These ionospheric specifications are then used by the raytracing algorithm to determine 

the propagation path of user-chosen HF signals. 

Hausman – Nickisch Raytracing Algorithm 

 This update to the Jones-Stephenson raytracing algorithm is also treated as a 

“black box”.  Critical input parameters include the following:  latitude/longitude of 

transmitter (WPAFB); signal frequency, azimuth angle, elevation angle, and signal mode; 

file name of 3-D plasma frequency grid.  An example of these input parameters, as well 

as many others, is shown in Appendix C.  For additional guidance on the algorithm’s 

operation, refer to the unofficial user’s guide written by Aune [2006] or to the official 
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user’s guide provided by NWRA.  The raytracing code produces the 3-D position of the 

HF signal along its entire propagation path, from the transmitter to where it impacts the 

Earth’s surface (receiver).  Note that the raytracing code can also calculate multiple hops 

of a signal.  This data is then ingested and visualized using MATLAB®. 

Case Study Selection 

 Five case studies are used to assess the impact of various ionospheric models on 

HF signal raytracing.  These case studies cover an assortment of ionospheric conditions, 

ranging from quiet conditions to solar flares and geomagnetic storms.  Specific signal 

frequencies are chosen in order to avoid ionospheric penetration, which is dependent on 

the particular case study’s ionospheric conditions.  This also holds true for a signal’s 

elevation angle of transmission.  As a reminder, this thesis examines only a signal’s 

ordinary mode of propagation and not its extraordinary mode. 

 Case study #1 is chosen in an effort to isolate the effect that the E layer has on 

signal propagation and geo-location.  As described in the previous section, the stand-

alone IRI-2001 model is used to create an idealized, horizontally homogeneous 

ionosphere.  This ionosphere is then manually adjusted to have either a significant E layer 

or no E layer at all.  For our “base reference”, we design case study #2 to compare the 

ionospheric models at local noon on a day with totally quiet solar and geomagnetic 

conditions. 

 As for the remaining three case studies, our approach is to isolate certain 

ionospheric drivers.  For example, case study #3 focuses simply on the daily variability of 

the ionosphere at local noon during seven consecutive days of very low solar and 

geomagnetic activity.  Meanwhile, case study #4 investigates a strong X3 solar flare that 
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occurred on 15 July 2002 during low geomagnetic activity.  This particular event is 

chosen so that we can completely isolate the ionosphere’s response to only that of the 

flare.  Finally, case study #5 explores an intense geomagnetic storm that occurred on 27 

August 1998.  This event is chosen because there are no significant solar flares 

throughout its duration.  The unique qualities of this geomagnetic storm allow us to 

completely isolate the ionosphere’s response to only that of the geomagnetic storm.  

Tables 1, 2, and 3 contain specific information regarding each case study, such as their 

time(s) and date(s) of interest, corresponding ionospheric indices, and signal raytracing 

parameters. 

Table 1:  Dates and times of interest for each case study. 
Case Name Time (UT) Date

1 E layer Effect 1730 21-Sep-01
2 Quiet Condition 1745 9-Jan-06
3 Daily Variability 1745 8-Jan-06 - 14-Jan-06
4 Solar Flare 2000, 2015, 2215 15-Jul-02
5 Geomagnetic Storm 0045, 0245 27-Aug-98  

Table 2:  Ionospheric models and indices for each case study, including IG, Rz12, running 
39-hr average ap, Kp, and number of each solar flare type. 
Case Ionospheric Model Used IG / Rz12 Running 39-hr avg ap / Kp Flare (C / M / X)

1 IRI, GPSII 75.0 / 70.0 115.0 / 6.66 6 / 0 / 0
2 IRI, GPSII 20.6 / 20.8 2.5 / 0.00 0 / 0 / 0

PIM, GPSII 20.6 / 20.8 2.5 / 0.00 0 / 0 / 0
Unphysical IRI, GPSII 150.0 / 150.0 115 / 6.66 0 / 0 / 0

3 IRI, GPSII 20.6 / 20.8 0.9 - 4.8 / 0.00 - 1.66 all 0 / 0 / 0
4 IRI, GPSII 135.0 / 102.7 3.4 / 1.66 8 / 1 / 1

PIM, GPSII 135.0 / 102.7 3.4 / 1.66 8 / 1 / 1
5 IRI, GPSII 70.4 / 67.8 110.1 / 7.00 2 / 0 / 0

PIM, GPSII 70.4 / 67.8 110.1 / 7.00 2 / 0 / 0  
Table 3:  Signal parameters used in raytracing for each case study, including frequency, 
elevation (measured from horizon), azimuth (measured from true north), and mode. 
Case Freq (MHz) Elevation (deg) Azimuth (deg) Mode

1 6, 8 35.000 180.000 O
2 7 31.166 115.755 O
3 7 31.166 115.755 O
4 8 40.260 116.418 O
5 5 38.657 116.042 O  
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Results 

Case Study #1:  E layer Effect 

The first case study examines how the E layer affects HF signal propagation.  As 

described in the previous chapter, we create two horizontally homogeneous ionospheres; 

identical above the E region, but differing significantly within the E region.  One has a 

strong E layer, while the other has no E layer.  Refer to Table 2 for the various 

ionospheric indices that are used to generate these.  The plasma frequency profiles for 

both cases are shown in Figure 17; the figure represents the ionosphere over WPAFB at 

local noon. 

 
Figure 17:  E layer variation.  Plasma frequency (MHz) as a function of 
height (km) for Wright-Patterson AFB at local noon on the autumnal 
equinox during fictitious solar and geomagnetic conditions. 
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 We simulate the transmission of both a 6 MHz and 8 MHz signal through these 

idealized ionospheres.  Refer to Table 3 for the specific signal parameters that are used 

for the raytracing.  The resulting propagation paths, projected onto the x-z plane, are seen 

in Figure 18 (top = 6 MHz, bottom = 8 MHz).  The signals have a simple, quasi-parabolic 

trajectory when the E layer is negligible.  Their trajectories become more complex when 

a non-negligible E layer is added.  The signals begin to refract earlier in their propagation 

as they encounter the higher plasma frequencies of the E layer.  They continue 

propagating through the E layer and eventually refract back toward Earth due to the F 

layer.  Notice that the maximum height of their propagation path is exactly the same, 

irrespective of E layer magnitude.  This is because the two ionospheres have the same 

plasma frequencies above 165 km, where the majority of the refraction occurs.  The 

signals are refracted again by the E layer as they return to the Earth’s surface.  The 

resulting “wavy” trajectories seen in Figure 18 are thus due to the presence of the E layer.  

More importantly, the signals’ ground ranges increase by this effect because the 

refractions occur earlier in their propagation.  The ground range of the 6 MHz signal 

increases by 165 km, while the ground range of the 8 MHz signal increases by 47 km.  

The increase is less for the 8 MHz signal because its frequency is higher relative to the 

plasma frequency of the E layer. 

 The upper and lower limits of this “E layer effect” can be found by increasing or 

decreasing the signal frequency.  Lowering the frequency increases the ground range 

until the frequency becomes low enough to be “reflected” by the E layer.  Raising the 

frequency decreases the ground range offset until it eventually matches the negligible E 

layer case (assuming that the higher frequency does not penetrate the F layer). 

34 



www.manaraa.com

 

 
Figure 18:  Effect of E layer on signal propagation for two different frequencies.  
Signals are transmitted with elevation = 35o and azimuth = 180o from Wright-Patterson 
AFB, OH at local noon on the autumnal equinox during fictitious solar and geomagnetic 
conditions.  Their propagation paths are shown projected onto the x-z plane.  Top 
trajectory is for a 6 MHz signal; bottom trajectory is for an 8 MHz signal.  Presence of 
E layer increases the signals’ propagation path (signals return to Earth further 
downrange).  This effect is dramatically less for the slightly higher signal frequency. 

 

 This case study underscores the significance of the E layer to the ground range 

and its potential impact on the geo-location mission.  Therefore, it is critical that we 

obtain the most accurate specification of the lower ionosphere, particularly for lower 

frequencies.  In the remaining case studies we will focus on how well each of the three 

ionospheric models specifies the lower ionosphere under various ionospheric conditions. 
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Case Study #2:  Quiet Conditions 

 The second case study establishes a “base reference” by comparing the three 

ionospheric models, and corresponding raytrace results, for quiet solar and geomagnetic 

conditions.  Local noon on 9 Jan 06 is selected to represent our quiet conditions.  Refer to 

Table 2 for the various ionospheric indices that describe this day.  Figure 19 shows the 

critical frequency contours (MHz) for local noon on 9 Jan 06 using the various models.  

The left column depicts the results of the initialization model (IRI-2001 or PIM).  The 

right column is the GPSII model, using the corresponding initialization from the left 

column.  The middle row represents IRI-2001 and GPSII model results when unphysical 

initialization conditions are used (compared to the actual quiet conditions of 9 Jan 06).  

The intention is to gauge how well the GPSII model uses the measured TEC data to 

adjust for unphysical initialization.  The triangles indicate the position of GPS ground 

receivers used in the GPSII model specification, while the crosses show the position of 

ionospheric pierce points (at 400 km) for each satellite-receiver path. 

 There is a distinctive, consistent pattern throughout all of the GPSII model critical 

frequency contours.  The inner regions of plots have the most ionospheric pierce points, 

with the outer few degrees (latitude/longitude) of the plots lacking them entirely.  

Therefore, the most TEC data-driven model adjustments occur in the center of the grid.  

Consequently, the GPSII model reverts to the initialization model along the outer 

boundary.  This produces a subtle “bulls-eye” pattern, which was originally recognized 

and described by Fridman et al. [2006]. 

 The critical frequency contours of the IRI-2001 model (top left) and PIM (bottom 

left) initialization are remarkably similar.  The GPSII model with IRI initialization (top  
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Figure 19:  Critical frequency contours (MHz) at local noon on 9 Jan 06 (quiet solar and 
geomagnetic conditions).  Left column is the initialization model.  Right column is the 
GPSII model using the initialization model from the left column.  Top row uses IRI-2001 
initialization.  Middle row uses unphysical initialization conditions compared to the actual 
quiet conditions of 9 Jan 06, showing how the GPSII model adjusts for unphysical 
initialization.  Bottom row uses PIM initialization.  Triangles indicate position of GPS 
ground receivers and crosses show position of ionospheric pierce points (at 400 km) for each 
satellite-receiver path. 
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right) has overall lower critical frequencies compared to the IRI-2001 model (top left) by 

approximately 2 MHz.  Meanwhile, the GPSII model with PIM initialization (bottom 

right) only has these lower critical frequencies in the upper region of the plot compared to 

PIM (bottom left).  The two GPSII model specifications (top and bottom right) have 

roughly the same contour pattern, disregarding the “boundary effect” described earlier. 

 A signal is transmitted from WPAFB toward Norfolk, VA in anticipation of 

future ground truth data validation.  Refer to Table 3 for the specific signal parameters 

that are used for the raytracing.  Figure 20 shows the plasma frequency profiles at the 

signal’s approximate apogee for each of the six runs described in Figure 19. 

 
Figure 20:  Plasma frequency (MHz) as a function of height (km) at the approximate 
apogee of a signal transmitted from Wright-Patterson AFB, OH toward Norfolk, 
VA at local noon on 9 Jan 06 (quiet solar and geomagnetic conditions) using various 
ionospheric models.  The IRI model representing unphysically active conditions 
compared to actual quiet conditions is shown in blue. 
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Examining Figure 20, it is interesting to note in regards to the topside ionosphere (above 

the F2 peak) that the GPSII model makes significant adjustments to the IRI-2001 model 

initialization, especially when the unphysical conditions are used (comparing black/blue 

solid lines to dotted lines).  In contrast, very little adjustment is made when the GPSII 

model uses PIM for its initialization.  In the lower ionosphere (below the F2 peak), the 

GPSII model once again makes the least adjustment when it is initialized with PIM, 

increasing the plasma frequency by no more than 0.25 MHz.  All of the models have 

relatively the same E region profiles.  The unphysical IRI-2001 model has a slightly more 

pronounced E layer in response to the higher indices that are used as its inputs. 

 Perhaps most interesting, the GPSII model does not make any significant 

adjustments to the E layer, regardless of the initialization.  This suggests that using TEC 

data does not assist in specifying the E layer.  A logical explanation of why TEC data 

does not provide any E region information requires a closer look at the definition of TEC.  

Vertical TEC (rather than slant TEC along the satellite/receiver path) is simply the 

integration of the electron density with respect to altitude.  Instead of the usual plasma 

frequency profile, imagine a plasma density profile in linear coordinates.  Remember 

from Equation 1 that the plasma density is proportional to the square of its frequency.  

The vertical TEC can then be represented as the integrated area to the left of the density 

profile.  Analyzed in this way, the contribution of the E region to vertical TEC is 

considerably small and almost negligible.  Therefore, it is extremely difficult, if not 

impossible, to extract E region information from TEC measurements alone.  Keeping this 

in mind, it is doubtful that the GPSII model’s passive technique by itself can provide any 

better specification of the E layer. 
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 Figure 21 shows the resulting propagation path of an HF signal projected onto the 

x-z plane for all model runs except the unphysical IRI-2001 model.  Refer to Table 3 for 

the specific signal parameters that are used for the raytracing.  We find little difference 

between the trajectory that is computed using PIM and the trajectory computed using the 

GPSII model with PIM initialization (red lines).  This is because there is very little 

difference between the two ionospheric profiles, as mentioned earlier.  There is a bigger 

difference between the other two trajectories due to a larger divergence in their respective 

ionospheric profiles below 175 km. 

 
Figure 21:  Propagation path projected onto the x-z plane for a 7 MHz signal 
transmitted from Wright-Patterson AFB, OH toward Norfolk, VA at local noon on 
9 Jan 06 (quiet solar and geomagnetic conditions) using various ionospheric models. 

 

 The corresponding receiver locations are shown in Figure 22.  A receiver location 

is defined as the point where the signal impacts the Earth’s surface.  The GPSII model 

adjusts the receiver location by approximately 20 km from that of the IRI-2001 

initialization and only 3 km from that of PIM initialization.  Since the GPSII model uses 

TEC data to create a more realistic specification of the ionosphere, we would expect to 

see the receiver locations “converge” toward a common location, regardless of its 

initialization.  Instead, the receiver locations seen in Figure 22 actually “diverge” when 

the GPSII model is used. 

40 



www.manaraa.com

 

 
Figure 22:  Receiver location (where a signal returns to the Earth’s surface) for a 7 MHz 
signal transmitted from Wright-Patterson AFB, OH toward Norfolk, VA at local noon 
on 9 Jan 06 (quiet solar and geomagnetic conditions) using various ionospheric models. 

 

 This case study shows that the GPSII model is able to adjust for an unphysical 

initialization, yet more importantly that the GPSII model may not be able to aid in 

specifying the E layer.  As far as quiet conditions are concerned, the GPSII model makes 

the smallest adjustments when initialized with PIM. 

Case Study #3:  Daily Variability 

 With an established reference for quiet conditions, we next examine how the 

models represent the daily variability of the ionosphere and how this variability affects 

geo-location.  We examine local noon over seven consecutive days of very low solar and 

geomagnetic activity.  Refer to Table 2 for the various ionospheric indices that describe 

the conditions during this week of interest. 

 Figure 23 shows the plasma frequency profiles at the approximate point of apogee 

of a signal transmitted from WPAFB toward Norfolk, VA for local noon during the week 
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of interest using the IRI-2001 and GPSII models.  The profiles of the IRI-2001 model are 

tightly grouped and steadily decrease in plasma frequency throughout the week due to 

changes in both the solar zenith angle and neutral atmosphere.  In contrast, the profiles of 

the GPSII model are erratic and have no trend in plasma frequency fluctuations, 

especially in the lower ionosphere where maximum refraction of HF signals occurs (see 

inset of Figure 23). 

 

 
Figure 23:  Plasma frequency (MHz) as a function of height (km) at the approximate apogee 
of a signal transmitted from Wright-Patterson AFB, OH toward Norfolk, VA at local noon 
during the week of 8 – 14 Jan 06 (very low solar and geomagnetic activity) using the IRI 
and GPSII models. 
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 Figure 24 shows the crossrange as a function of distance downrange (from the 

transmitter) of an HF signal transmitted from WPAFB toward Norfolk, VA at local noon 

during the week of interest.  Refer to Table 3 for the specific signal parameters that are 

used for the raytracing.  The crossranges of the IRI-2001 model are once again tightly 

grouped, varying by less than 0.1 km at the end of the signal path.  Meanwhile, the 

crossranges of the GPSII model vary markedly throughout the week, differing by over 1 

km at the end of the signal path. 

 

 
Figure 24:  Crossrange (km) as a function of distance downrange from the 
transmitter (km) of a 7 MHz signal transmitted from Wright-Patterson 
AFB, OH toward Norfolk, VA at local noon during the week of 8 – 14 Jan 06 
(very low solar and geomagnetic activity) using the IRI and GPSII models. 
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 The corresponding receiver locations are shown in Figure 25.  The receiver 

locations of the IRI-2001 model are shifted by a consistent 1 km step to the southeast 

each day.  This is due to the steady decrease in plasma frequency of the IRI-2001 model 

throughout the week as the solar zenith angle decreases.  In stark contrast, the receiver 

locations of the GPSII model are highly variable, differing by as much as 5 km per day. 

 
Figure 25:  Receiver location (where a signal returns to the Earth’s surface) 
for a 7 MHz signal transmitted from Wright-Patterson AFB, OH toward 
Norfolk, VA at local noon during the week of 8 – 14 Jan 06 (very low solar and 
geomagnetic activity) using various ionospheric models. 

 

 These results show that the IRI model represents the daily variability of the 

ionosphere as fairly steady, while the GPSII model represents the daily variability as 

erratic.  Furthermore, this daily variability has a considerable influence on the resulting 

receiver location.  We cannot make a firm conclusion of whether the GPSII model 

captures the expected daily variability without comparison to ground truth data.  In other 

words, the model may just exhibit behavior that is characteristic of such real world 

variability.  Also keep in mind that these results are under quiet conditions.  The daily 

variability is even more pronounced during periods of high activity. 
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Case Study #4:  Solar Flare Event 

 This case study completely isolates the ionosphere’s response to only that of a 

solar flare.  We examine a strong X3 solar flare that occurred on 15 July 2002 during low 

geomagnetic activity.  The flare began at approximately 2000 UT, reached a maximum at 

approximately 2010 UT, and returned to background levels by 2215 UT.  Refer to Table 

2 for the various ionospheric indices that describe the conditions during this event.  The 

ionosphere’s characteristic response to a solar flare is an enhancement of the D and lower 

E regions due to an increase in x-ray and EUV absorption.  Since the IRI-2001 model and 

PIM do not have input parameters to capture this increase in x-ray/EUV flux, our focus 

turns to whether the GPSII model can capture the ionosphere’s response using the TEC 

data. 

 Figure 26 shows the critical frequency contours during the solar flare event using 

the GPSII model.  Each row represents successive time steps of 2000 UT (flare 

beginning), 2015 UT (5 minutes after flare maximum), and 2215 UT (return to 

background levels).  The left column is the GPSII model initialized with the IRI-2001 

model, while the right column is the GPSII model initialized with PIM.  The contours are 

very similar at the beginning of the flare.  An increase in the critical frequencies at 2015 

UT (directly following the flare maximum) create a ridge in the contours that stretch into 

Indiana, Ohio, and Michigan.  The GPSII model has a more pronounced ridge when 

initialized with PIM, including a maximum critical frequency centered over southern 

Michigan.  The ridge disappears by 2215 UT, returning the contours to roughly their 

original shape and strength prior to the flare. 

 

45 



www.manaraa.com

 

 
Figure 26:  Critical frequency contours (MHz) during an X3 solar flare on 15 Jul 02.  Left 
column is the GPSII model initialized with the IRI-2001 model.  Right column is the GPSII 
model initialized with PIM.  Each row represents successive time steps of before (2000 UT), 
during (2015 UT), and after the solar flare (2215 UT).  Triangles indicate position of GPS 
ground receivers and crosses show position of ionospheric pierce points (at 400 km) for each 
satellite-receiver path. 
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 The critical frequency contours only represent the strength of the F2 peak.  

Therefore, we want to look at an entire plasma frequency profile for a location near the 

contour ridge.  Figure 27 shows the plasma frequency profiles for WPAFB at 2000 UT 

and 2015 UT.  As expected, the profiles of the IRI-2001 model and PIM do not change 

between the two times.  It is interesting that PIM has a stronger F1 region and upper E 

region (from 125 km to 225 km) when compared to the IRI-2001 model.  The GPSII 

model makes the largest adjustments in plasma frequency in the upper ionosphere.  This 

is particularly true at 2015 UT when it is initialized with PIM, resulting in an 

enhancement of the F1 region as well. 

 As in case study #2, the GPSII model does not make any adjustments to the E 

layer, regardless of the initialization.  We expect to see an increase in the lower E layer 

plasma frequencies at the time of peak x-ray and EUV fluxes during the solar flare.  This 

ionization enhancement is due to absorption of the x-ray and EUV radiation.  We can 

surmise that the TEC data does not assist in specifying the E layer, since the GPSII model 

does not show any of the expected enhancements.  Remember from our earlier analysis of 

TEC that the contribution of the E region to vertical TEC is more or less negligible, 

making it exceedingly difficult to extract E region information from TEC data alone. 
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Figure 27:  Plasma frequency (MHz) as a function of height (km) at Wright-
Patterson AFB, OH both before (2000 UT, top) and during (2015 UT, 
bottom) an X3 solar flare on 15 Jul 02 using various ionospheric models. 
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 Figure 28 shows the resulting propagation path (projected onto the x-z plane) of 

an HF signal transmitted from WPAFB toward Norfolk, VA both before and during the 

solar flare using the various models.  Refer to Table 3 for the specific signal parameters 

that are used for the raytracing.  PIM’s stronger F1 region and upper E region cause the 

signal to refract earlier in its propagation and ultimately result in longer ground ranges, 

seen in the red and green trajectories (essentially the E layer effect from case study #1).  

The GPSII model’s strengthening of the F1 region at 2015 UT also result in a longer 

ground range. 

 
Figure 28:  Propagation path projected onto the x-z plane for an 8 MHz signal 
transmitted from Wright-Patterson AFB, OH toward Norfolk, VA both before (2000 UT) 
and during (2015 UT) an X3 solar flare on 15 Jul 02 using various ionospheric models. 

 

The corresponding receiver locations are shown in Figure 29.  Remember that the GPSII 

model makes the largest adjustment during the flare maximum when it is initialized with 

PIM.  This adjustment shifts the receiver location by more than 40 km. 
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Figure 29:  Receiver location (where a signal returns to the Earth’s surface) for a signal 
transmitted from Wright-Patterson AFB, OH toward Norfolk, VA both before (2000 UT) 
and during (2015 UT) an X3 solar flare on 15 Jul 02 using various ionospheric models. 

 

 These results show that the IRI-2001 model and PIM can have significantly 

different specifications of the lower ionosphere, especially the F1 and upper E regions.  

The only way to determine which model has a better specification would be to compare 

them to actual ionosonde data.  More importantly, the GPSII model is able to capture the 

upper-ionospheric response to a solar flare, yet not the lower-ionospheric response.  The 

TEC data once again does not aid in specifying the E layer.  This suggests that using the 

GPSII model’s passive technique by itself may not be sufficient, especially during solar 

flares when the lower E region is noticeably enhanced.  Therefore, active measuring 

techniques may be necessary for proper specification of the E layer. 
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Case Study #5:  Geomagnetic Storm Event 

 This last case study isolates the ionosphere’s response to only that of a 

geomagnetic storm.  We investigate the 10th strongest geomagnetic storm of solar cycle 

23 (based on maximum running 39-hour average ap), which occurred on 27 August 1998.  

This storm is special because there are no significant solar flares throughout its duration 

(only two C-class flares).  Refer to Table 2 for the various ionospheric indices that 

describe the conditions during this event.  The ionosphere’s characteristic response to a 

geomagnetic storm is described in Chapter II.  As a reminder, the F region experiences a 

density enhancement during the storm’s initial (or positive) phase and then depletion 

during the storm’s main (or negative) phase.  Both the IRI-2001 model and PIM have 

input parameters (ap and Kp indices) that capture the geomagnetic variations, yet they 

only provide a limited ionospheric response when compared to the actual intensity of this 

strong storm.  Consequently, our focus turns to whether the GPSII model can capture the 

ionosphere’s response using the TEC data. 

 Figure 30 shows the critical frequency contours during the geomagnetic storm 

event using the GPSII model.  The left column represents the initial positive phase at 

0045 UT, while the right column represents the beginning of the main negative phase at 

0245 UT.  The top row is the GPSII model initialized with the IRI-2001 model, while the 

bottom row is the GPSII model initialized with PIM.  The critical frequencies approach 

14 MHz for almost the entire southern region of interest during the initial phase when all 

21 receivers are used in the GPSII specification.  The critical frequencies decrease during 

the beginning of the main phase as expected, which produce a minima of approximately 4 

to 5 MHz in southeastern Michigan in the GPSII model specification. 
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Figure 30:  Critical frequency contours (MHz) during a geomagnetic storm on 27 Aug 98.  
Left column is during the initial positive phase (0045 UT).  Right column is during the 
beginning of the main negative phase (0245 UT).  Top row is the GPSII model initialized 
with the IRI-2001 model.  Bottom row is the GPSII model initialized with PIM.  Triangles 
indicate position of GPS ground receivers and crosses show position of ionospheric pierce 
points (at 400 km) for each satellite-receiver path. 

 

 Since the critical frequency contours only represent the strength of the F2 peak, 

we want to look at an entire plasma frequency profile for a location that is near a maxima 

during the initial phase and near a minima during the beginning of the main phase.  

Figure 31 shows the plasma frequency profiles for WPAFB at 0045 UT (top) and 0245 

UT (bottom).  There are a few interesting profile comparisons worth noting.  The profiles 

for both the IRI-2001 model and PIM decrease slightly above 250 km between the storm 
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phases, which is expected.  The GPSII model has to make significant adjustments in 

plasma frequency above 250 km for the initial phase, yet makes much smaller 

adjustments for the main phase.  PIM’s lower F1 region and upper E region (from 125 km 

to 200 km) strengthens slightly between the storm phases.  Overall, the plasma 

frequencies below 225 km decrease between storm phases for each of the models.  What 

is most interesting is that the GPSII model, as in case studies #2 and #4, does not make 

any adjustments to the E layer, regardless of what is used for its initialization.  The TEC 

data once more does not aid in specifying the E layer.  As we know from our previous 

analysis in Case Study #2, we cannot expect TEC measurements to provide much 

additional E region information. 
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Figure 31:  Plasma frequency (MHz) as a function of height (km) at the approximate 
apogee of a signal transmitted from Wright-Patterson AFB, OH toward Norfolk, 
VA for both the initial positive phase (0045 UT, top) and main negative phase (0245 
UT, bottom) of a geomagnetic storm on 27 Aug 98 using various ionospheric models. 
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 Figure 32 shows the resulting propagation path (projected onto the x-z plane) of 

an HF signal transmitted from WPAFB toward Norfolk, VA during both the initial and 

main phases of the geomagnetic storm using the various models.  Refer to Table 3 for the 

specific signal parameters that are used for the raytracing.  The decrease in plasma 

frequencies below 225 km between storm phases cause the signal’s apogee height to 

increase for all of the models, resulting in longer ground ranges (seen in the blue and 

green trajectories). 

 
Figure 32:  Propagation path projected onto the x-z plane for a 5 MHz signal 
transmitted from Wright-Patterson AFB, OH toward Norfolk, VA for both the 
initial positive phase (0045 UT) and main negative phase (0245 UT) of a 
geomagnetic storm on 27 Aug 98 using various ionospheric models. 

 

The corresponding receiver locations are shown in Figure 33.  The GPSII model’s 

adjustment of PIM during the main phase has adjusted the receiver location by 36 km.  In 

contrast, the GPSII model’s adjustment of the IRI-2001 model during the main phase has 

adjusted the receiver location by more than 60 km. 
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Figure 33:  Receiver location (where a signal returns to the Earth’s surface) for a 5 
MHz signal transmitted from Wright-Patterson AFB, OH toward Norfolk, VA for 
both the initial positive phase (0045 UT) and main negative phase (0245 UT) of a 
geomagnetic storm on 27 Aug 98 using various ionospheric models. 

 

 Similar to the last case study, this case study shows that the IRI-2001 model and 

PIM can have significantly different specifications of the lower ionosphere, especially the 

lower F1 and upper E regions.  Actual ionosonde data would be needed for comparison in 

order to determine which model has a better specification.  Of more significant 

importance is that the GPSII model is able to capture the upper-ionospheric response to a 

geomagnetic storm, yet is unable to capture the lower-ionospheric response (since TEC 

data provides negligible E region information).  We can conclude that using the GPSII 

model’s passive technique by itself may only be beneficial to specifying the ionosphere 

above the E region, especially during geomagnetic storms. 
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Conclusion 

Summary 

The critical national defense mission of geo-location remains highly dependent on 

our ability to accurately measure and predict the dynamic state of the ionosphere.  The 

primary objective of this thesis was to assess how the IRI-2001, PIM, and GPSII 

ionospheric models impact HF signal raytracing during various ionospheric conditions.  

The secondary objective was to ascertain whether using passive techniques to model the 

ionosphere provide sufficient accuracy for geo-location.  Three software components 

were used for data collection, processing, and visualization.  These included the 

ionospheric model, the Hausman – Nickisch update of the Jones – Stephenson raytracing 

algorithm, and MATLAB®.  Five case studies were used to explore a wide range of 

ionospheric conditions; including quiet, daily variability, solar flare, and geomagnetic 

storming. 

 Case study #1 showed how much the E layer by itself could significantly affect a 

signal’s ground range and in turn impact the geo-location mission, highlighting the 

importance of accurately specifying the lower ionosphere.  Case study #2 established a 

“base reference” by comparing the models at local noon on a day with quiet solar and 

geomagnetic conditions.  It showed that the GPSII model was able to adjust for an 

unphysical initialization by using TEC data and, as far as quiet conditions were 

concerned, it showed that the GPSII model made the smallest adjustments in plasma 

frequency when initialized with PIM.  More importantly, it provided the first evidence 

that the GPSII model may not be able to assist in specifying the E layer.  From analyzing 

the definition of TEC we were able to determine that the E region’s contribution to 
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vertical TEC is more or less insignificant.  Consequently, it is extremely difficult to 

extract any reasonable E region information from TEC data alone. 

 The three remaining case studies focused on isolating certain ionospheric drivers.  

Case study #3 examined the daily variability of the ionosphere at local noon over seven 

consecutive days of very low solar and geomagnetic activity.  The results showed that the 

GPSII model may be able to capture the expected daily variability of the ionosphere by 

using TEC data.  Furthermore, we were able to see how this daily variability had a 

considerable affect on the resulting receiver location, which would be even more 

pronounced during a period of high solar and geomagnetic activity.  Case studies #4 and 

#5 were designed to isolate the ionosphere’s response to exclusively a solar flare and a 

geomagnetic storm.  Case study #4 investigated a strong X3 solar flare that occurred on 

15 July 2002 during low geomagnetic activity.  Case study #5 explored an intense 

geomagnetic storm that occurred on 27 August 1998, in which there were no significant 

solar flares throughout its duration.  Both case studies showed that the IRI-2001 model 

and PIM could have significantly different specifications of the lower ionosphere, 

especially the F1 and upper E regions.  Actual ionosonde data would be needed for 

comparison in order to determine which model had a better specification. 

 More significantly, the results showed that the GPSII model was able to capture 

the upper-ionospheric response to both the solar flare and the geomagnetic storm.  

Moreover, they provided further evidence that the GPSII model was not able to capture 

the lower-ionospheric response to these events.  The TEC data simply did not assist in 

specifying the E layer.  This suggests that using the GPSII model’s passive technique by 

itself may only be beneficial to specifying the ionosphere above the E region, especially 

58 



www.manaraa.com

 

during solar flares and geomagnetic storms.  We will most likely have to rely on using 

active measuring techniques, such as vertical ionosondes, to accurately specify the lower 

ionosphere.  Fortunately, the GPSII model is designed to incorporate ionosonde data.  We 

recommend using data from ionosondes that are only located within friendly territory, so 

as to maintain as much passivity as possible behind enemy lines. 

Future Research 

The results from this thesis have generated several ideas for future research: 

1)  Eliminate the “bulls-eye” pattern (boundary effect) described in case study #2.  This 

could be accomplished by increasing the latitudinal and longitudinal extent of the GPSII 

model’s output.  Note that this larger data set would require longer computational time.  

MATLAB® could then be used to crop the output data to a smaller region of interest, 

thus removing the boundary effect.  Of course, the user would have to find a balance 

between their computational resources and the mission-dictated region of interest. 

2)  Determine if there are any model sensitivities when dealing with the lateral refraction 

of a signal, otherwise known as the signal’s crossrange.  In particular, examine why the 

crossrange of a signal can be dependent on the initialization model used.  For comparison 

in future research, the crossrange plots not included in Chapter IV have been provided in 

Appendix D. 

3)  During the course of our research we were able to identify that a solar radio burst 

(concurrent with the solar flare on 15 Jul 02) caused nearly all of the GPS ground 

receivers in our region of interest to experience a “loss of lock” of the precision 

information embedded within the GPS signal.  This radio burst had a peak flux of 1100 

solar flux units at 1415 MHz (directly between the L1 and L2 frequency bands of the 
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GPS signal).  This precision information, although still encrypted, is used by the civilian 

sector to improve GPS accuracy through a technique called “semicodeless tracking”.  

This technique will be used until the next-generation GPS constellation is completed in 

2012.  There is a strong correlation between solar radio bursts and the loss of lock by 

semicodeless receivers, as reported by Chen et al. [2005].  Future research could include 

exploring the sensitivity of commercial GPS receivers to solar radio bursts that were 

previously considered too weak to have any effect.  The MATLAB® script created for 

this thesis could be used to identify the number of GPS receivers affected by allegedly 

weak radio bursts. 

4)  The newest version of the GPSII model (as of 25 Jan 07) is designed to incorporate 

TEC data from low-Earth-orbiting (LEO) satellites.  Future research could compare the 

GPSII model’s performance when using LEO TEC data versus GPS TEC data. 

5)  Include ionosonde data as an input for the GPSII model.  Compare its specification to 

those found in this thesis.  Explore how changing the location of the ionosonde affects the 

raytracing and geo-location. 

6)  Finally, use ground truth data to validate the performance of the models when used for 

geo-location.  Ground truth data would include the measured elevation and azimuth 

angles of frequencies received from known radio towers (beacons) as a function of time 

during various ionospheric conditions. 

 Any of these ideas, taken individually or in combination, would be suitable for 

future graduate research and could be completed using the same components and 

methodology used in this thesis.  Continued research in this area will advance our ability 

to exploit the ionosphere and mitigate its impact on critical national defense missions. 
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Appendix A:  Magnetoionic Splitting 

 The following figures were created with the raytracing algorithm.  Its parameters 

were selected in such a way as to produce general magnetoionic splitting behavior. 

 

 
Figure 34:  Magnetoionic splitting of a 10 MHz signal transmitted with elevation = 49o from 
Wright-Patterson AFB at local noon on the autumnal equinox during normal solar and 
geomagnetic activity.  Shown is crossrange (km) as a function of distance downrange (km) 
for two transmission azimuths (top = 225o, bottom = 315o; both are not in the direction of 
one of the four magnetic cardinal points).  The signal’s ordinary mode deviates toward 
magnetic north, while its extraordinary mode deviates toward magnetic south.  Signals 
return to Earth in a plane parallel to the transmission plane but not necessarily coincident 
with it. 
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Figure 35:  Final crossrange (at the point where the signal returns to Earth, in km) as a 
function of azimuth angle (deg) for HF signals of various frequencies and elevation angles 
transmitted from Wright-Patterson AFB at local noon on the autumnal equinox during 
normal solar and geomagnetic activity.  Both the ordinary mode (top) and extraordinary 
mode (bottom) have zero final crossrange near the four magnetic cardinal points.  Final 
crossrange of ordinary mode is opposite in direction to that of the extraordinary mode for 
all transmission azimuths. 

62 



www.manaraa.com

 

 
Figure 36:  Magnetoionic splitting of a 10 MHz signal transmitted with elevation = 49o and 
azimuth = 225o from Wright-Patterson AFB at local noon on the autumnal equinox during 
normal solar and geomagnetic activity.  Fundamentally, signal “reflection” occurs when 

refractive index = 0, thus for ordinary mode when
2

2 1plasma

signal

ω
ω

=  and for extraordinary mode 

when 
2

2 1plasma cyclotron

signal signal

ω ω
ω ω

= − .  As a consequence, the extraordinary mode “reflects” earlier in 

its propagation, resulting in a lower apogee height and shorter ground range. 
 

 
Figure 37:  Ground range (km) as a function of azimuth angle (deg) for a 10 MHz signal 
transmitted with elevation = 20o from Wright-Patterson AFB at local noon on the autumnal 
equinox during normal solar and geomagnetic activity.  Depending on transmission 
azimuth, the ordinary mode’s ground range varies by as much 120 km with a magnetic field 
present (solid line); zero variation with no magnetic field present (dotted line). 
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Appendix B:  GPSII Model Initialization File 

An example of the GPSII model’s initialization file, “GPS_Inv_evolve_init.txt”: 

 
$Initialization 
 
!InOut_data_dir='.\GPSII_output\Case6' 
name_line = '15Jul02-0000.qr               channel  1' ! Specifies the starting time of the inversion 
 
time_interval_sec = 86400             ! Duration of the solution interval 
TimeStepMin_sec = 900!900!1800!3600    ! Temporal step of the solution 
attenuation_time_sec = 3600!3600!7200!14400!  ! Time taken for a previous solution to diminish in importance by 1/e when 
computing a new solution 
 
SolarSpotIndex = 102.7   ! User must look these values up for the specific date/time of interest 
KpIndex = 1.66     ! User must look these values up for the specific date/time of interest 
 
Ionosphere_Model_type = 'PIM'  !  
 
sp3_file = 'D:\Documents and Settings\jwerner\My Documents\Raytrace\GPSII\GPS_input\2002\196\igr11751.sp3' 
 ! 
 
list_file_name = 'D:\Documents and Settings\jwerner\My Documents\Raytrace\GPSII\GPS_input\2002\196\listfile_all.txt' ! 
 
RINEX_directory = 'D:\Documents and Settings\jwerner\My Documents\Raytrace\GPSII\GPS_input\2002\196\'  
 ! 
 
!lat_center_degrees = 35   ! Geographical coordinates for the central point of oblique mercator projection 
!lon_center_degrees = -120         ! 
!skew_angle_degrees = 0      ! Inclination of the projection 
!x1min = -10.d0              ! Modified latitude of the boundaries, counted from the center specified above 
!x1max = 10.d0              !  
!x2min = -10.d0            ! Modified longitude of the boundaries, counted from the center specified 
above 
!x2max = 10.d0        ! 
 
lat_center_degrees = 0         ! These settings correspond to cylindrical projection: (must = 0 for 
"Raytrace.exe" to work) 
lon_center_degrees = 0         ! (must = 0 for "Raytrace.exe" to work) 
skew_angle_degrees = 0         ! (must = 0 for "Raytrace.exe" to work) 
x1min = 31.d0              ! Lower boundary of region of interest (Geographic latitude) 
x1max = 49.d0              ! Upper boundary of region of interest (Geographic latitude) 
x2min = -96.d0              ! Left boundary of region of interest (Geographic longitude) 
x2max = -72.d0     ! Right boundary of region of interest (Geographic longitude) 
 
nx1 = 37     ! Number of latitude grid nodes (number of divisions = nodes - 1) 
nx2 = 49               ! Number of longitude grid nodes (number of divisions = nodes - 1) 
              
AltTblBottom = 80.d0    ! Specifications of the altitude grid in the output 3-D table files (km) 
AltTblTop = 500.d0    ! 
AltTblStep1 = 1     ! 
AltTblStep2 = 2     ! 
AltTblStep3 = 4     ! 
AltTblCross1 = 200.d0    ! 
AltTblCross2 = 300.d0      ! 
 
ElevMinDegrees = 15               ! Minimum elevation of the satellite (deg) 
 
IonosphereBoundaryHeightKm = 1000.0d0  ! Satellite lines of sight will be projected into this level to determine 
             ! whether they are inside of the area of interest  
 
min_distance_between_rcvrs_km = 250   ! 
 
inherit_solution = .true.                   ! 
inherit_bias_stat = .true.        ! 
!inherit_solution = .false.                   ! 
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!inherit_bias_stat = .false.        ! 
 
use_previously_selected_data_if_available=.true.! If true, GPSII uses the last computed solution if the run was aborted or crashed 
(looks for "Selected_paths_all.bin" in working directory) 
 
pair_relTEC_with_absTEC=.false.   ! default is .false. 
 
x1SmoothingHalfWidth = 6.0                   ! >=0 Scale for smoothing of the background model (degrees) (set to < lat resolution 
(x1max - x1min)/(nx1 - 1) for courser smoothing)  
x2SmoothingHalfWidth = 6.0                   ! >=0 Scale for smoothing of the background model (degrees) (set to < lon resolution 
(x2max - x2min)/(nx2 - 1) for courser smoothing) 
 
 
 
AltMin=80.d0     ! Specification of the computational altitude grid (km) 
AltMax=20000.0d0    ! 
AltStepMin=2     ! 
AltStepMax=200      ! 
 
RxAltMin_km = -20              ! Minimum altitude of acceptable receivers (km) 
RxAltMax_km = 20             ! Maximum altitude of acceptable receivers (km) 
 
ReferenceLayerHeightKm = 400.0          ! Level to determine subionospheric points for plotting 
 
Hstep = 0.05       ! Internal altitudinal step for kern calculation 
 
x1_scale_deg = 6    ! Smoothness scales 
x2_scale_deg = 6    ! 
alt_scale_relative = 1.0     ! 
 
Use_Phase_data = .true.    ! 
do_perform_dynamic_leveling = .true.  ! 
 
MaxIterations = 15    ! 
SufficientlyManyIterations = 15   ! 
nTestSamples = 50    ! 
 
iterations_to_relaxate = 0   ! 
 
regularizer_regime = 2                       ! Second order (2) or first order (1) regularizer  
 
AbsTEC_Error = 3.6e16                        ! Will be ignored if NslidingSamples > 0 
 
Receiver_Bias_error = 30e16                  ! Initial standard deviation of the receiver bias 
Transmitter_Bias_error = 15e16               ! Initial standard deviation of the transmitter bias 
Receiver_Bias_Time_Const_days = 8!7  ! 
Transmitter_Bias_Time_Const_days = 14  ! 
NslidingSamples = 19                         ! For sliding estimate of the abs TEC noise 
nSlidingSamplesForDifVar2 = 19               ! For phase TEC noise estimate 
TEC2ndDif_est = 1.2e13     ! 1/(m**2*sample**2) 
use_sliding_averageP12 = .true.   ! 
Tp_factor_base_value = 1.41d0                ! Factor to inflate noise estimates 
Tp_factor_DifferentialBaseValue = 1.41  ! 
Tp_factor_DifferentialMaxValue = 10d0  ! 
TerminatorNoiseInflationMax = 2.d0  ! 
 
FitErrStartingTooBig = 5.0d3   ! 
FitErrTooBig = 3.d0    ! 
 
TECP12_noise_MaxTECU = 10.0                  ! Abs TEC noise rejection threshold 
dTECL12_noise_MaxTECU = 0.2                  ! Relative TEC noise rejection threshold (30 s interval) 
 
read_stored_file_names_only = .true.  ! 
 
AlphaMin = 1.d-8    ! 
AlphaMax = 1.0d8     ! 
theta = 1.2d0     ! 
 
AlphaPrevToAlphaLowerBound_goal = 1       ! 100 
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AlphaPrevToAlphaUpperBound_goal = 1000.0     ! Finish it 
AlphaPrevEnforcementStartTStep = -10000  ! 
 
WriteTECforPlotting = .true.   ! 
dTEC_threshold_TECU = 1.d0                   ! Rejection threshold for testing of the first difference 
          ! of the phase-based TEC series per RINEX sampling period (usu 
30s) 
dTEC_rate_threshold_TECU = 0.1d0             ! Rejection threshold for testing second difference 
          ! of the phase-based TEC series per RINEX sampling period (usu 
30s) 
AttenuationFactorForTderivative = 0.0d0      ! A value from 0.0 to 1.0.  
          ! Zero corresponds to using zero order extrapolation from the 
previous 
          ! time step for starting solution on the current step 
          ! One corresponds to linear extrapolation 
OptimizeAttenuation = .true.                 ! <=> Select the best starting solution among solutions obtained 
       ! with zero order extrapolation and with 
AttenuationFactorForTderivative 
 
CenterAltitudeWithLowVariabilityKm = 285.d0  !  
AltScaleLowVarability = 150.0d0   ! 
RelMagnitudeOfHighVariability = 1.d0  ! 
diagonalProfCov = .true.    ! .false.            
 
$end 
 
******************************************************************* 
*************************QVI Sounders information****************** 
-------------------------------------------------------------------------------------- 
SounderID,SounderLat,SounderLon(degrees 
decimal),nefitFileName,ProfileFileName,ref_prof_spec,match_fof2_spec,[DeltaProfFpRel,DeltaProfFpMHz,DeltaProfHkm,[Abovek
m]] 
-------------------------------------------------------------------------------------- 
*************************End QVI Sounders************************** 
******************************************************************* 
'ARGUELLO'  35.6,  -120.6   'nefit1.par'  '06Sep04-1500-PA836_profile.tbl' 'table' 'match fof2'         
'BOULDER'  40.0,  -105.3   'nefit1.par'  '07Aug06-1530-BC840_profile.tbl' 'table' 'match fof2' 0.03 0.10 20.0 0.0    
!'VA_ROTHR'  36.4684,  -76.2592   'nefit_v.par'  '_qviscale_v.tbl' 'table' 'match fof2'           
!Project directories: 
!http://gaim.cass.usu.edu/JULY2001/GAIMHTML/page34.html 
!http://www.aiub.unibe.ch/download/CODE/CODE.ACN 
!http://www.ngs.noaa.gov/GPS/GPS.html 
!http://140.96.176.15/GPS_WEEK/calendar.y97 
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Appendix C:  Hausman – Nickisch Raytracing Algorithm Initialization File 

An example of the raytracing algorithm’s initialization file with extension “*.dat”: 

'AHWFNC' 'T3DLLLOG' 'NOELECT1' 'HARMONY' 'NOCOLFRZ' 
!----------------------------------------------------------------------- 
Testing GPSII geo-location accuracy 
1        1                / 1 = ORDINARY RAY; -1 = EXTRAORDINARY RAY 
4       40.0      'DEG'   / NORTH GEOGRAPHIC LATITUDE OF TRANSMITTER 
5      -84.0      'DEG'   / EAST GEOGRAPHIC LONGITUDE OF TRANSMITTER 
7        7.0              / INITIAL FREQUENCY (MHZ) 
8        7.0              / FINAL FREQUENCY (MHZ) 
9        0.               / STEP IN FREQUENCY (MHZ) 
11     115.755    'DEG'   / INITIAL AZIMUTH ANGLE 
12     115.755    'DEG'   / FINAL AZIMUTH ANGLE 
13       0.       'DEG'   / STEP IN AZIMUTH ANGLE 
15      31.166    'DEG'   / INITIAL ELEVATION ANGLE 
16      31.166    'DEG'   / FINAL ELEVATION ANGLE 
17       0.       'DEG'   / STEP IN ELEVATION ANGLE 
19       0                / 3 = HOMER at one freq, 7 = HOMER at multiple frequencies ! change POWER FLAG = 1 
20       0.               / receiver altitude (km) 
22       1                / NUMBER OF HOPS 
23       1.E4             / MAXIMUM NUMBER OF STEPS PER HOP 
!24      78.6      'DEG'   / LATITUDE OF GEOMAGNETIC POLE (RAD)   (use this for 'DIPOLY' magnetic field) 
!25     -69.8      'DEG'   / LONGITUDE OF GEOMAGNETIC POLE (RAD)  (use this for 'DIPOLY' magnetic field) 
24      89.9999   'DEG'   / LATITUDE OF GEOMAGNETIC POLE (RAD)    (use this for 'HARMONY' magnetic field) 
25       0.00     'DEG'   / LONGITUDE OF GEOMAGNETIC POLE (RAD)   (use this for 'HARMONY' magnetic field) 
29       1                / STOPRAY (use STOPCHK routine) 
30    5000.               / Stop at group path of 5000 km 
42       1.E-6            / MAXIMUM RELATIVE SINGLE STEP ERROR 
45     100.               / MAXIMUM INTEGRATION STEP LENGTH (KM) 
57       2                / PHASE PATH            !  = 1 COMPUTE, = 2 COMPUTE AND PRINT 
60       2                / PATH LENGTH           !  = 1 COMPUTE, = 2 COMPUTE AND PRINT 
62       2                / TEC                   !  = 1 COMPUTE, = 2 COMPUTE AND PRINT 
63       1                / TEC**2                !  = 1 COMPUTE, = 2 COMPUTE AND PRINT 
71       0                / NUMBER OF STEPS BETWEEN PERIODIC PRINTOUTS 
72       1                / GENERATE PUNCHED OUTPUT FILE 
81       5                / PLOT FLAG  (0 = no 'rayplot.bin' file; 5 = Ne grid AND rays in 'rayplot.bin'; 6 = rays in 'rayplot.bin') 
83      25.       'DEG'   / LATITUDE OF BOTTOM EDGE OF PLOT  ! WHEN PLOT FLAG = 5 
84    -125.       'DEG'   / LONGITUDE OF LEFT EDGE OF PLOT   ! WHEN PLOT FLAG = 5 
85      50.       'DEG'   / LATITUDE OF TOP EDGE OF PLOT     ! WHEN PLOT FLAG = 5 
86     -65.       'DEG'   / LONGITUDE OF RIGHT EDGE OF PLOT  ! WHEN PLOT FLAG = 5 
100      1                / READ IONOSPHERIC DATA FROM TABLE FILE 
221   2006.0260           / 4-DIGIT DECIMAL YEAR (fractional part = months,days) ! Use this for 'HARMONY' magnetic field) 
320      0                / POWER FLAG  (1 to turn on - REQUIRED for ray homing) 
!330     28.5              / Homing latitude  (note, no use of keyword 'DEG' here) 
!331    -98.5              / Homing longitude (note, no use of keyword 'DEG' here) 
!332      0.01             / Homing accuracy (km) 
// 
!*********************************************************************** 
@09JAN2006_1745_GPSII_using_PIM.txt 
!----------------------------------------------------------------------- 
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Appendix D:  Crossrange Plots 

 
Figure 38:  Crossrange (km) as a function of distance downrange (km) for a 6 MHz and 8 
MHz signal transmitted with elevation = 35o and azimuth = 180o from Wright-Patterson 
AFB, OH at local noon on the autumnal equinox during normal solar and geomagnetic 
activity.  Two ionospheres are used; one has an E layer (solid lines), the other does not have 
an E layer (dotted lines). 
 

 
Figure 39:  Crossrange (km) as a function of distance downrange (km) for a 7 MHz signal 
transmitted with elevation = 31.166o from Wright-Patterson AFB, OH toward Norfolk, VA 
at local noon on 9 Jan 06 (quiet solar and geomagnetic conditions) using various ionospheric 
models. 
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Figure 40:  Crossrange (km) as a function of distance downrange (km) for an 8 MHz signal 
transmitted with elevation = 40.260o from Wright-Patterson AFB, OH toward Norfolk, VA 
both before (2000 UT) and during (2015 UT) a solar flare on 15 Jul 02 using various 
ionospheric models. 
 

 
Figure 41:  Crossrange (km) as a function of distance downrange (km) for a 5 MHz signal 
transmitted with elevation = 38.657o from Wright-Patterson AFB, OH toward Norfolk, VA 
during the initial positive phase (0045 UT) and the beginning of the main negative phase 
(0245 UT) of a geomagnetic storm on 27 Aug 98 using various ionospheric models. 
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